Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(93): eadj7363, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427721

RESUMO

Peyer's patches (PPs) are lymphoid structures situated adjacent to the intestinal epithelium that support B cell responses that give rise to many intestinal IgA-secreting cells. Induction of isotype switching to IgA in PPs requires interactions between B cells and TGFß-activating conventional dendritic cells type 2 (cDC2s) in the subepithelial dome (SED). However, the mechanisms promoting cDC2 positioning in the SED are unclear. Here, we found that PP cDC2s express GPR35, a receptor that promotes cell migration in response to various metabolites, including 5-hydroxyindoleacetic acid (5-HIAA). In mice lacking GPR35, fewer cDC2s were found in the SED, and frequencies of IgA+ germinal center (GC) B cells were reduced. IgA plasma cells were reduced in both the PPs and lamina propria. These phenotypes were also observed in chimeric mice that lacked GPR35 selectively in cDCs. GPR35 deficiency led to reduced coating of commensal bacteria with IgA and reduced IgA responses to cholera toxin. Mast cells were present in the SED, and mast cell-deficient mice had reduced PP cDC2s and IgA+ cells. Ablation of tryptophan hydroxylase 1 (Tph1) in mast cells to prevent their production of 5-HIAA similarly led to reduced PP cDC2s and IgA responses. Thus, mast cell-guided positioning of GPR35+ cDC2s in the PP SED supports induction of intestinal IgA responses.


Assuntos
Linfócitos B , Mastócitos , Animais , Camundongos , Ácido Hidroxi-Indolacético , Movimento Celular , Imunoglobulina A Secretora , Nódulos Linfáticos Agregados , Receptores Acoplados a Proteínas G/genética
2.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38077002

RESUMO

The bone marrow is the main site of blood cell production in adults, however, rare pools of hematopoietic stem and progenitor cells with self-renewal and differentiation potential have been found in extramedullary organs. The lung is primarily known for its role in gas exchange but has recently been described as a site of blood production in mice. Here, we show that functional hematopoietic precursors reside in the extravascular spaces of the human lung, at a frequency similar to the bone marrow, and are capable of proliferation and engraftment. The organ-specific gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune, megakaryocyte/platelet and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to a vascular-rich alveolar interstitium niche. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans.

3.
Immunity ; 56(7): 1548-1560.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37279752

RESUMO

Cryptococcus neoformans is the leading cause of fungal meningitis and is characterized by pathogenic eosinophil accumulation in the context of type-2 inflammation. The chemoattractant receptor GPR35 is expressed by granulocytes and promotes their migration to the inflammatory mediator 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Given the inflammatory nature of cryptococcal infection, we examined the role of GPR35 in the circuitry underlying cell recruitment to the lung. GPR35 deficiency dampened eosinophil recruitment and fungal growth, whereas overexpression promoted eosinophil homing to airways and fungal replication. Activated platelets and mast cells were the sources of GPR35 ligand activity and pharmacological inhibition of serotonin conversion to 5-HIAA, or genetic deficiency in 5-HIAA production by platelets and mast cells resulted in more efficient clearance of Cryptococcus. Thus, the 5-HIAA-GPR35 axis is an eosinophil chemoattractant receptor system that modulates the clearance of a lethal fungal pathogen, with implications for the use of serotonin metabolism inhibitors in the treatment of fungal infections.


Assuntos
Criptococose , Infecções Fúngicas Invasivas , Humanos , Eosinófilos , Ácido Hidroxi-Indolacético , Mastócitos , Plaquetas , Ligantes , Receptores de Formil Peptídeo , Serotonina , Criptococose/microbiologia , Criptococose/patologia , Receptores Acoplados a Proteínas G/genética
4.
Immunol Rev ; 317(1): 187-202, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36928841

RESUMO

Neutrophil recruitment from circulation to sites of inflammation is guided by multiple chemoattractant cues emanating from tissue cells, immune cells, and platelets. Here, we focus on the function of one G-protein coupled receptor, GPR35, in neutrophil recruitment. GPR35 has been challenging to study due the description of multiple ligands and G-protein couplings. Recently, we found that GPR35-expressing hematopoietic cells respond to the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). We discuss distinct response profiles of GPR35 to 5-HIAA compared to other ligands. To place the functions of 5-HIAA in context, we summarize the actions of serotonin in vascular biology and leukocyte recruitment. Important sources of serotonin and 5-HIAA are platelets and mast cells. We discuss the dynamics of cell migration into inflamed tissues and how multiple platelet and mast cell-derived mediators, including 5-HIAA, cooperate to promote neutrophil recruitment. Additional actions of GPR35 in tissue physiology are reviewed. Finally, we discuss how clinically approved drugs that modulate serotonin uptake and metabolism may influence 5-HIAA-GPR35 function, and we speculate about broader influences of the GPR35 ligand-receptor system in immunity and disease.


Assuntos
Mastócitos , Neutrófilos , Humanos , Plaquetas , Ligantes , Serotonina/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Inflamação , Movimento Celular , Infiltração de Neutrófilos , Receptores Acoplados a Proteínas G/metabolismo
5.
Vaccines (Basel) ; 10(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36016115

RESUMO

Humoral immunity is crucial for protection against invading pathogens. Broadly neutralizing antibodies (bnAbs) provide sterilizing immunity by targeting conserved regions of viral variants and represent the goal of most vaccination approaches. While antibodies can be selected to bind virtually any region of a given antigen, the consistent induction of bnAbs in the context of influenza and HIV has represented a major roadblock. Many possible explanations have been considered; however, none of the arguments proposed to date seem to fully recapitulate the observed counter-selection for broadly protective antibodies. Antibodies can influence antigen presentation by enhancing the processing of CD4 epitopes adjacent to the binding region while suppressing the overlapping ones. We analyze the relative positioning of dominant B and T cell epitopes in published antigens that elicit strong and poor humoral responses. In strong immunogenic antigens, regions bound by immunodominant antibodies are frequently adjacent to CD4 epitopes, potentially boosting their presentation. Conversely, poorly immunogenic regions targeted by bnAbs in HIV and influenza overlap with clusters of dominant CD4 epitopes, potentially conferring an intrinsic disadvantage for bnAb-bearing B cells in germinal centers. Here, we propose the theory of immunodominance relativity, according to which the relative positioning of immunodominant B and CD4 epitopes within a given antigen drives immunodominance. Thus, we suggest that the relative positioning of B-T epitopes may be one additional mechanism that cooperates with other previously described processes to influence immunodominance. If demonstrated, this theory can improve the current understanding of immunodominance, provide a novel explanation for HIV and influenza escape from humoral responses, and pave the way for a new rational design of universal vaccines.

7.
Cell ; 185(5): 815-830.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148838

RESUMO

Rapid neutrophil recruitment to sites of inflammation is crucial for innate immune responses. Here, we reveal that the G-protein-coupled receptor GPR35 is upregulated in activated neutrophils, and it promotes their migration. GPR35-deficient neutrophils are less recruited from blood vessels into inflamed tissue, and the mice are less efficient in clearing peritoneal bacteria. Using a bioassay, we find that serum and activated platelet supernatant stimulate GPR35, and we identify the platelet-derived serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) as a GPR35 ligand. GPR35 function in neutrophil recruitment is strongly dependent on platelets, with the receptor promoting transmigration across platelet-coated endothelium. Mast cells also attract GPR35+ cells via 5-HIAA. Mice deficient in 5-HIAA show a loss of GPR35-mediated neutrophil recruitment to inflamed tissue. These findings identify 5-HIAA as a GPR35 ligand and neutrophil chemoattractant and establish a role for platelet- and mast cell-produced 5-HIAA in cell recruitment to the sites of inflammation and bacterial clearance.


Assuntos
Ácido Hidroxi-Indolacético/metabolismo , Neutrófilos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Inflamação/metabolismo , Ligantes , Camundongos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Serotonina/metabolismo
8.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33724364

RESUMO

The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα1ß2-expressing Rorgt+ ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα+CD4+Esam+ cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα+CD4+Esam+ cDC2s required continuous lymphotoxin input. This latter property made Sirpα+CD4+Esam+ cDC2s uniquely susceptible to pharmacological interventions with LTßR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα1ß2-expressing Rorgt+ ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata , Tecido Linfoide/imunologia , Linfotoxina-alfa/imunologia , Transdução de Sinais/imunologia , Baço/imunologia , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Células Dendríticas/metabolismo , Feminino , Tecido Linfoide/citologia , Tecido Linfoide/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/imunologia , Receptor beta de Linfotoxina/metabolismo , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Baço/citologia , Baço/metabolismo
9.
Nat Immunol ; 21(3): 321-330, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066949

RESUMO

Differentiation of CD4+ T cells into either follicular helper T (TFH) or type 1 helper T (TH1) cells influences the balance between humoral and cellular adaptive immunity, but the mechanisms whereby pathogens elicit distinct effector cells are incompletely understood. Here we analyzed the spatiotemporal dynamics of CD4+ T cells during infection with recombinant vesicular stomatitis virus (VSV), which induces early, potent neutralizing antibodies, or recombinant lymphocytic choriomeningitis virus (LCMV), which induces a vigorous cellular response but inefficient neutralizing antibodies, expressing the same T cell epitope. Early exposure of dendritic cells to type I interferon (IFN), which occurred during infection with VSV, induced production of the cytokine IL-6 and drove TFH cell polarization, whereas late exposure to type I IFN, which occurred during infection with LCMV, did not induce IL-6 and allowed differentiation into TH1 cells. Thus, tight spatiotemporal regulation of type I IFN shapes antiviral CD4+ T cell differentiation and might instruct vaccine design strategies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interferon Tipo I/metabolismo , Imunidade Adaptativa , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/classificação , Diferenciação Celular/imunologia , Feminino , Interleucina-6/biossíntese , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise Espaço-Temporal , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Vírus da Estomatite Vesicular Indiana/patogenicidade , Vírus da Estomatite Vesicular New Jersey/imunologia , Vírus da Estomatite Vesicular New Jersey/patogenicidade
10.
Immunol Lett ; 215: 19-23, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30771379

RESUMO

Type I interferons (IFNs) released upon viral infections play different and opposing roles in disease outcome. This pleiotropic effect is mainly influenced by the cellular sources, timing and target cells for these molecules. The effect of type I IFN signaling on the activation and differentiation of antiviral CD4+ T cells remains ill defined, with studies reporting either a beneficial or a detrimental role, depending on the context of infection. This review will highlight several recent studies that have investigated the role of type I IFNs in the priming and polarization of CD4+ T cells and discuss areas of uncertainty that require further investigation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Interferon Tipo I/imunologia , Ativação Linfocitária , Transdução de Sinais/imunologia , Viroses/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Humanos , Viroses/patologia
11.
J Exp Med ; 215(12): 2972-2983, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30429248

RESUMO

Immunoglobulin M (IgM) is the first type of antibody produced during acute infections and thus provides an early line of specific defense against pathogens. Being produced in secondary lymphoid organs, IgM must rapidly be exported to the blood circulation. However, it is currently unknown how such large pentameric molecules are released from lymph nodes (LNs). Here, we show that upon immunization, IgM transiently gains access to the luminal side of the conduit system, a reticular infrastructure enabling fast delivery of tissue-derived soluble substances to the LN parenchyma. Using microinjections of purified IgM, we demonstrate that conduit-associated IgM is delivered by neither the afferent lymph nor the blood, but is locally conveyed by conduits. Exploiting in vivo models, we further demonstrate that conduit-associated IgM is locally and transiently produced by activated, antigen-specific B cells migrating in the T cell zone. Thus, our study reveals that the conduit system is coopted by B cells to rapidly export secreted IgM out of LNs.


Assuntos
Imunoglobulina M/imunologia , Linfonodos/imunologia , Linfócitos T/imunologia , Animais , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Linfócitos T/citologia
12.
Curr Opin Virol ; 28: 102-107, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29287222

RESUMO

Viral infections represent a major threat for mankind. The adaptive immune system plays a key role in both viral clearance and disease pathogenesis, and, accordingly, understanding how lymphocytes interact with different viruses is critical to design more effective vaccination and therapeutic strategies. The recent advent of intravital microscopy has enabled the real-time visualization of the complex interplay between viruses and the ensuing adaptive immune response in living organisms. Here, we will review the most significant recent insights on antiviral adaptive immune responses obtained through intravital imaging. We will also discuss what challenges lie ahead and what we think are the most promising areas for future research.


Assuntos
Imunidade Adaptativa , Microscopia Intravital , Viroses/diagnóstico por imagem , Viroses/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Humanos , Imunidade Inata , Camundongos , Linfócitos T/imunologia , Linfócitos T/virologia , Vacinação , Vírus
13.
Science ; 358(6370): 1622-1626, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29217582

RESUMO

Cellular functions are strongly dependent on surrounding cells and environmental factors. Current technologies are limited in their ability to characterize the spatial location and gene programs of cells in poorly structured and dynamic niches. We developed a method, NICHE-seq, that combines photoactivatable fluorescent reporters, two-photon microscopy, and single-cell RNA sequencing (scRNA-seq) to infer the cellular and molecular composition of niches. We applied NICHE-seq to examine the high-order assembly of immune cell networks. NICHE-seq is highly reproducible in spatial tissue reconstruction, enabling identification of rare niche-specific immune subpopulations and gene programs, including natural killer cells within infected B cell follicles and distinct myeloid states in the spleen and tumor. This study establishes NICHE-seq as a broadly applicable method for elucidating high-order spatial organization of cell types and their molecular pathways.


Assuntos
Linfócitos B/imunologia , Perfilação da Expressão Gênica/métodos , Células Matadoras Naturais/imunologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Genes Reporter/efeitos dos fármacos , Genômica/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Neoplasias/imunologia , Baço/imunologia , Baço/virologia , Viroses/imunologia
14.
EMBO Mol Med ; 9(11): 1482-1490, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28899929

RESUMO

Several lines of evidence indirectly suggest that antigenic stimulation through the B-cell receptor (BCR) supports chronic lymphocytic leukemia (CLL) development. In addition to self-antigens, a number of microbial antigens have been proposed to contribute to the selection of the immunoglobulins expressed in CLL. How pathogen-specific BCRs drive CLL development remains, however, largely unexplored. Here, we utilized mouse models of CLL pathogenesis to equip B cells with virus-specific BCRs and study the effect of antigen recognition on leukemia growth. Our results show that BCR engagement is absolutely required for CLL development. Unexpectedly, however, neither acute nor chronic exposure to virus-derived antigens influenced leukemia progression. Rather, CLL clones preferentially selected light chains that, when paired with virus-specific heavy chains, conferred B cells the ability to recognize a broad range of autoantigens. Taken together, our results suggest that pathogens may drive CLL pathogenesis by selecting and expanding pathogen-specific B cells that cross-react with one or more self-antigens.


Assuntos
Autoantígenos/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Cadeias Leves de Imunoglobulina/metabolismo , Imunoglobulinas/metabolismo , Molécula 3 de Adesão Intercelular/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise Serial de Proteínas , Proteínas Proto-Oncogênicas/genética , Baço/citologia , Baço/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/metabolismo
15.
Sci Immunol ; 1(4)2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27868108

RESUMO

Antibodies are critical for protection against viral infections. However, several viruses, such as lymphocytic choriomeningitis virus (LCMV), avoid the induction of early protective antibody responses by poorly understood mechanisms. Here we analyzed the spatiotemporal dynamics of B cell activation to show that, upon subcutaneous infection, LCMV-specific B cells readily relocate to the interfollicular and T cell areas of the draining lymph node where they extensively interact with CD11b+Ly6Chi inflammatory monocytes. These myeloid cells were recruited to lymph nodes draining LCMV infection sites in a type I interferon-, CCR2-dependent fashion and they suppressed antiviral B cell responses by virtue of their ability to produce nitric oxide. Depletion of inflammatory monocytes, inhibition of their lymph node recruitment or impairment of their nitric oxide-producing ability enhanced LCMV-specific B cell survival and led to robust neutralizing antibody production. In conclusion, our results identify inflammatory monocytes as critical gatekeepers that prevent antiviral B cell responses and suggest that certain viruses take advantage of these cells to prolong their persistence within the host.

16.
Cell Rep ; 5(2): 323-30, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24120862

RESUMO

Bisphosphonates are a class of drugs that are widely used to inhibit loss of bone mass in patients. We show here that the administration of clinically relevant doses of bisphosphonates in mice increases antibody responses to live and inactive viruses, proteins, haptens, and existing commercial vaccine formulations. Bisphosphonates exert this adjuvant-like activity in the absence of CD4(+) and γδ T cells, neutrophils, or dendritic cells, and their effect does not rely on local macrophage depletion, Toll-like receptor signaling, or the inflammasome. Rather, bisphosphonates target directly B cells and enhance B cell expansion and antibody production upon antigen encounter. These data establish bisphosphonates as an additional class of adjuvants that boost humoral immune responses.


Assuntos
Linfócitos B/metabolismo , Difosfonatos/farmacologia , Imunidade Humoral/efeitos dos fármacos , Adjuvantes Imunológicos , Animais , Formação de Anticorpos/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Humanos , Imunoglobulina G/metabolismo , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptores Toll-Like/metabolismo , Vesiculovirus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...